Translate

Sabtu, 13 Oktober 2012

keramik polimer

Keramik
Keramik merupakan campuran antara komponen logam dan nonlogam. Kebanyakan keramik adalah hasil dari oksidasi dan karbonasi. Bahan-bahan yang termasuk ke dalam jenis keramik adalah yang tersusun dari mineral tanah liat, semen, dan kaca. Bahan keramik biasanya digunakan sebagai isolasi aliran listrik dan panas, dan memiliki sifat lebih tahan terhadap suhu yang tinggi dan lingkungan yang keras dibandingkan dengan logam dan polimer, sifatnya keras tetapi sangat rapuh.

Karakteristik struktur ,sifat keramik dan Teknik pemerosesan keramik

I. Karakteristik struktur keramik
Struktur kristal keramik (terdiri dari berbagai ukuran atom yang berbeda atau minimal terdiri dari 2 jenis unsur) merupakan salah satu yang paling kompleks dari semua struktur bahan. Ikatan antara atom-atom ini umumnya ikatan kovalen (berbagi elektron, sehingga ikatan ini kuat) atau ion (terutama ikatanantara ion bermuatan, sehingga ikatan ini kuat). Ikatan ini jauh lebih kuat daripada ikatan logam. Akibatnya, sifat-sifat seperti kekerasan dan ketahanan panas dan listrik secara signifikan lebih tinggi keramik dari pada logam. Keramik dapat berikatan kristal tunggal ataudalam bentuk polikristalin. Ukuran butir mempunyai pengaruh besar terhadap kekuatan dan sifat-sifat keramik; ukuran butir yang halus (sehingga dikatakan keramik halus), semakin tinggi kekuatan dan ketangguhannya.
Kebanyakan bahan pembentuk keramik memiliki ikatan ion, ikatan kovalen dan ikatanantara. Sebagai missal, bagian ikatan ion dalam sistem Mg-O, Al-O, Zn-O dan Si-O dapat dikatakan masing-masing 70%, 60%, 60% dan 50%. Yang sangat menarik adalah bahwa pada
ReO3,V2O3 dan TiO, yang merupakan oksida dan tidak pernah menunjukkan sifat liat ataudapat di deformasikan, tetapi memiliki hantaran listrik yang relatif dapat disamakan dengan logam biasa.
Dalam Kristal yang rumit, berbagai macam atom berperan dan ikatannya merupakan ikatan campuran dalam banyak hal. Struktur Kristal demikian dapat dimengerti apabila mengingat bahwa Kristal tersusun oleh kombinasi dari polyhedron koordinasi, dimana satuan kecil dari kation dikelilingi oleh beberapa anion. Salah satu contoh adalah silikat yang merupakan bahan baku penting bagi keramik.
II.  Sifat-sifat keramik
Secara umum kramik merupakan paduan antara logam dan non logam , senyawa paduan tersebut memiliki ikatan ionik dan ikatan kovalen . untuk lebih jelasnya mengenai sifat-sifat kramik berikut ini akan dijelaskan lebih detail.
a. Sifat Mekanik
Keramik merupakan material yang kuat, keras dan juga tahan korosi. Selain itu keramik memiliki kerapatan yang rendah dan juga titik lelehnya yang tinggi. Keterbatasan utama keramik adalah kerapuhannya, yakni kecenderungan untuk patah tiba-tiba dengan deformasi plastik yang sedikit. Di dalam keramik, karena kombinasi dari ikatan ion dan kovalen, partikel-partikelnya tidak mudah bergeser.
Faktor  rapuh terjadi bila pembentukan dan propagasi keretakan yang cepat.Dalam padatan kristalin, retakan tumbuh melalui butiran (trans granular) dan sepanjang bidang cleavage (keretakan) dalam kristalnya. Permukaan tempat putusyang dihasilkan mungkin memiliki tekstur yang penuh butiran atau kasar. Material yang amorf tidak memiliki butiran dan bidang kristal yang teratur, sehingga permukaan putus kemungkinan besar terjadi. Kekuatan tekan penting untuk keramik yang digunakan untuk struktur seperti bangunan. Kekuatan tekan keramik biasanya lebih besar dari kekuatan tariknya. Untuk memperbaiki sifat ini biasanya keramik di-pretekan dalam keadaan tertekan
b. Sifat Termal
Sifat termal bahan keramik adalah kapasitas panas, koefisien ekspansitermal, dan konduktivitas termal. Kapasitas panas bahan adalah kemampuan bahan untuk mengabsorbsi panas dari lingkungan. Panas yang diserap disimpan olehpadatan antara lain dalam bentuk vibrasi (getaran) atom/ion penyusun padatantersebut.
Keramik biasanya memiliki ikatan yang kuat dan atom-atom yang ringan. Jadigetaran-getaran atom-atomnya akan berfrekuensi tinggi dan karena ikatannya kuat maka getaran yang besar tidak akan menimbulkan gangguan yang terlalu banyak padakisi kristalnya.
Sebagian besar keramik memiliki titik leleh yang tinggi, artinya walaupun pada temperatur yang tinggi material ini dapat bertahan dari deformasi dan dapat bertahan dibawah tekanan tinggi. Akan tetapi perubahan temperatur yang besar dan tiba-tiba dapat melemahkan keramik. Kontraksi dan ekspansi pada perubahan temperatur tersebutlah yang dapat membuat keramik pecah.
c.  Sifat elektrik
Sifat listrik bahan keramik sangat bervariasi. Keramik dikenal sangat baik sebagai solator. Beberapa isolator keramik (seperti BaTiO 3) dapat dipolarisasi dan digunakan ebagai  kapasitor.  Keramik  lain  menghantarkan  elektron  bila  energi  ambangnya dicapai, dan oleh karena itu disebut semikonduktor. Tahun 1986, keramik jenis baru, yakni superkonduktor temperatur kritis tinggi ditemukan. Bahan jenis ini di bawah suhu  kritisnya  memiliki  hambatan  = 0.  Akhirnya,  keramik  yang  disebut  sebagai piezoelektrik  dapat  menghasilkan  respons  listrik  akibat  tekanan  mekanik  atau sebaliknya.
Elektron valensi dalam keramik tidak berada di pita konduksi,sehingga sebagian besar keramik adalah isolator. Namun, konduktivitas keramik dapat ditingkatkan dengan memberikan ketakmurnian. Energi termal juga akanmempromosikan elektron ke pita konduksi, sehingga dalam keramik, konduktivitasmeningkat (hambatan menurun) dengan kenaikan suhu.
Beberapa keramik memiliki sifat piezoelektrik, atau kelistrikan tekan. Sifat ini merupakan bagian bahan “canggih” yang sering digunakan sebagai sensor. Dalambahan piezoelektrik, penerapan gaya atau tekanan dipermukaannya akan menginduksipolarisasi dan akan terjadi medan listrik, jadi bahan tersebut mengubah tekananmekanis menjadi tegangan listrik. Bahan piezoelektrik digunakan untuk tranduser,yang ditemui pada mikrofon, dan sebagainya.
Dalam bahan keramik, muatan listrik dapat juga dihantarkan oleh ion-ion. Sifat ini dapat diubah-ubah dengan merubah komposisi, dan merupakan dasar banyakaplikasi komersial, dari sensor zat kimia sampai generator daya listrik skala besar.Salah satu teknologi yang paling prominen adalah sel bahan bakar.
d.  Sifat Optik
Bila cahaya mengenai suatu obyek cahaya dapat ditransmisikan, diabsorbsi, ataudipantulkan. Bahan bervariasi dalam kemampuan untuk mentransmisikan cahaya, danbiasanya dideskripsikan sebagai transparan, translusen, atau opaque. Material yang transparan, seperti gelas,mentransmisikan cahaya dengan difus, seperti gelasterfrosted, disebut bahan translusen. Batuan yang opaque tidak mentransmisikan cahaya.Dua mekanisme penting interaksi cahaya dengan partikel dalam padatan adalahpolarisasi elektronik dan transisi elektron antar tingkat energi. Polarisasi adalahdistorsi awan elektron atom oleh medan listrik dari cahaya. Sebagai akibat polarisasi,sebagian energi dikonversikan menjadi deformasi elastik (fonon), dan selanjutnya panas.
e. Sifat kimia
Salah  satu  sifat  khas  dari  keramik  adalah  kestabilan  kimia.  Sifat  kimia  dari permukaan keramik dapat dimanfaatkan secara positif. Karbon aktif, silika gel, zeolit, dsb, mempunyai luas permukaan besar dan dipakai sebagai bahan pengabsorb. Kalau oksida logam dipanaskan pada kira-kira 500 C, permukaannya menjadi bersifat asam atau bersifat basa. Alumina g , zeolit, lempung asam atau S 2O 2 – TiO 2 demikian juga berbagai oksida biner dipakai sebagai katalis, yang memanfaatkan aksi katalitik dari titik bersifat asam dan basa pada permukaan.
f. Sifat fisik
Sebagian besar keramik adalah ikatan dari karbon, oksigen atau nitrogen dengan material lain seperti logam ringan dan semilogam. Hal ini menyebabkan keramik biasanya memiliki densitas yang kecil. Sebagian keramik yang ringan mungkin dapat sekeras logam yang berat. Keramik yang keras juga tahan terhadap gesekan. Senyawa keramik yang paling keras adalah berlian, diikuti boron nitrida pada urutan kedua dalam bentuk kristal kubusnya. Aluminum oksida dan silikon karbida biasa digunakan untuk memotong, menggiling, menghaluskan dan menghaluskan material-material keras lain.
III.     Contoh
Keramik adalah  material  anorganik  dan non-metal.  Umumnya  keramik  adalah senyawa antara logam dan non logam.  Untuk mendapatkan sifat-sifat  keramik biasanya diperoleh dengan pemanasan pada suhu tinggi. Keramik:tradisional , modern .
Keramik tradisional :biasanya dibuat dari tanah liat .
Contoh: porselen, bata ubin, gelas dll.
Keramik modern : mempunyai ruang lingkup lebih luas dari keramik tradisional dan mempunyai  efek  dramatis  pada  kehidupan   manusia  seperti pemakaian  pada  bidang  elektronik,  komputer,  komunikasi, aerospace dll.
IV. Teknik pemerosesan keramik
a.      Pembubukan
Bahan-bahan dasar keramik umumnya berbentuk bubukan. Bahan dasar tersebut dapat diperoleh dengan metode konvensional atau non konvensional. Metode konvensional misalnya kalsinasi; yaitu menguraikan suatu bahan  padatan menjadi beberapa bagian yang lebih sederhana; Milling yaitu menggiling atau menghaluskan bahan; mixing yaitu mencampurkan beberapa bahan menjadi satu bahan. Sedangkan metode nonkonvensional misalnya teknik larutan sepaerti metode sol-gel, metode fase uap, atau dekomposisi garam. Dalam proses pembubukan tersebut , seringkali harus ditambahkan bahan penstabil agar suhu dapat diturunkan atatu bahan organik yang berfungsi sebagai pengikat atau pelunak bubukan sehingga mudah dibentuk.
b.      Pembentukan
Metode pembentukan ini bermacam-macam, misalnya metode pres isostatik dan aksial; metode cetak lepas, yaitu dicetak hingga kering lalu dilepas; metode cetak balut yaitu bahn dibiarkan tetap berada daalm cetakn atau cetak injeksi yaitu bahan dimasukan ke dalam cetakan dengan cara diinjeksikan ke dalamnya.
c.       Penekanan
Penekanan atau disebut juga kompaksi dilaukan untuk membentuk serbuk keramik menjadi suatu bentuk padatan berupa pelet mentah. Pelet mentah adalah serbuk yang telah menjadi bentuk padat tetapi belum disinter. Prosedur dasar penekanan dibagi menjadi 3 yaitu:
  • Uniaxial
Serbuk dibentuk dalam cetakan logam dengan penekanan satu arah. Penenkanan ini dapat memproduksi banyak pelet dan tidak mahal dibanding metode lain. Berdasarka cara kerjanya, penekanan ini dibagi menjadi 3 yaitu : single action uniaxial pressing, double action uniaxial pressing, dan uniaxial pressing with a floating mould or die.
  • Isostatik: Penekanan serbuk dilakukan dengan menggunakan cairan.
  • Hot pressing:Penekanan dilakukan secar simultan denga perlakuan panas pada serbuk.
d.      Sintering
Sintering adalah metode pemanasan yang dilakukan terhadap suatu material ( biaasnya dalam bentuk serbuk) pada suhu dibawah titik lelehnya sehingga menjadi bentuk padatan . Serbuk berubah menjadi padatan karena pada suhu tersebut partikel-partikel akan saling melekat. Setelah disintering bentuk porositas berubah cenderung berbrntuk bola. Selain itu semakin lama dipanaskan bentuk pori akan semakin kecil. Karena itu ukuran sampel yang telah disinter akan semakin kecil juga.
Sintering terbagi menjadi 2 jenis, yaitu berdassarkan ada tidaknya fase cair selama proses sintering. Sintering yang terjadi disertai adanya fase cair disebut sintering fase cair, dan sintering yang terjadi tanpa fase cair disebut sintering padat.
Tahap sintering dilakukan untuk memadat kompakan bahan, yang sudah dicetak dan dikeringkan dengan suhu tinggi.
e.       Anneling dan Aging
Anealing adalah proses pemanasan yang lebih rendah dari sebelumnya. Dengan maksud agar parameter dan sifat yang diinginkan mencapai optimum. Sedangkan aging adalah proses pendinginan selama beberapa waktu tertentu.
f.        Tahap akhir
Pada tahap ini, bahan keramik dikenakan berbagai perlakuan akhir sehingga sipa dipalikasika sesuai dengan sifat bahan yang diinginkan. Perlakuan tersebut misalnya mengasah, memoles, memberi lapisan logam, memberi mantel untuk perlindungan dan lain-lain.
Secara bagan proses pembuatan bahan keramik adalah :
Proses pembubukan atau penghalusan –> Pembentukan –> Pengeringan —> sintering –> anealing dan aging –> Aplikasi akhir.

Polimer

         Suatu polimer adalah rantai berulang dari atom yang panjang, terbentuk dari pengikat yang berupa molekul identik yang disebut monomer. Sekalipun biasanya merupakan organik (memiliki rantai karbon), ada juga banyak polimer inorganik. Contoh terkenal dari polimer adalah plastik dan DNA.
              Polimer didefinisikan sebagai substansi yang terdiri dari molekul-molekul yang menyertakan rangkaian satu atau lebih dari satu unit monomer. Manusia sudah berabad-abad menggunakan polimer dalam bentuk minyak, aspal, damar, dan permen karet. Tapi industri polimer modern baru mulai berkembang pada masa revolusi industri. Di akhir 1830-an, Charles Goodyear berhasil memproduksi sebentuk karet alami yang berguna melalui proses yang dikenal sebagai “vulkanisasi”. 40 tahun kemudian, Celluloid (sebentuk plastik keras dari nitrocellulose) berhasil dikomersialisasikan. Adalah diperkenalkannya vinyl, neoprene, polystyrene, dan nilon pada tahun 1930-an yang memulai ‘ledakan’ dalam penelitian polimer yang masih berlangsung sampai sekarang. Sebelum mendiskusikan peranan polimer dalam konstruksi komersial, berikut ini kami sajikan sedikit infromasi mengenasi struktur, tipe, dan sifat-sifat fisik polimer. 
            Polimer seperti kapas, wol, karet, dan semua plastik digunakan di hampir semua industri. Polimer alami dan sintetik bisa diproduksi dengan beragam kekakuan, kekuatan, ketebalan, dan ketahanan terhadap panas. Elastomer (polimer bersifat elastis) memiliki struktur yang saling bersilangan dan longgar. Struktur rantai bertipe inilah yang menyebabkan elastomer memiliki ingatan. Rata-rata 1 dari 100 molekul saling bersilangan. Saat jumlah rata-rata ikatan saling bersilangan itu meningkat (sekitar 1 dalam 30), material menjadi lebih kaku dan rapuh. Baik karet alami dan sintetis adalah contoh dari elastomer. Di bawah kondisi temperatur dan tekanan tertentu, plastik yang juga termasuk polimer dapat dibentuk atau dicetak. Berbeda dengan elastomer, plastik lebih kaku dan tidak memiliki elastisitas yang dapat dibalik. Selulosa mreupakan salah satu contoh material berpolimer yang harus dimodifikasi secara bertahap sebelum diproses dengan metode yang biasanya digunakan untuk plastik. Beberapa plastik (seperti nilon dan selulosa asetat) dibentuk menjadi fiber. 
              Padatan amorf terbentuk saat rantai memiliki orientasi yang kecil di sepanjang polimer yang besar. Temperatur transisi kaca merupakan titik dimana polimer mengeras menjadi padatan amorf. Istilah ini digunakan sebab padatan amorf punya sifat-sifat yang mirip dengan kaca. Dalam proses kristalisasi, ditemukan bahwa rantai-rantai yang relatif pendek mengorganisir diri mereka sendiri menjadi struktur kristalin lebih cepat daripada molekul yang lebih panjang. Dengan begitu, derajat polimerisasi (DP) merupakan sebuah faktor yang penting dalam menentukan kekristalinan sebuah polimer. Polimer dengan DP yang tinggi sulit diatur menjadi lapisan-lapisan sebab cenderung menjadi kusut. Dalam mempelajari polimer dan aplikasinya, penting untuk memahami konsep temperatur transisi kaca, T g. Polimer yang temperaturnya jatuh di bawah T g akan semakin kusut. Sedang polimer yang temperaturnya naik di atas T g akan menjadi lebih mirip dengan karet. 
                   Dengan begitu, pengetahuan akan T g merupakan hal yang penting dalam memilih bahan-bahan untuk berbagai aplikasi. Pada umumnya, nilai T g di bawah temperatur ruangan menentukan bidang elastomer sedang nilai T g di atas temperatur ruangan menyebabkan polimer berstruktur kaku. Perilaku ini bisa dipahami dalam hal struktur bahan berkaca yang biasanya dibentuk oleh substansi yang mengandung rantai-rantai yang panjang, jaringan atom-atom yang berhubungan, atau apapun yang memiliki struktur molekul yang komples. Normalnya dalal keadaan cair, bahan-bahan seperti itu memiliki sifat rekat/kekentalan yang tinggi. Saat temperatur berubah menjadi dingin dengan cepat, kristalin berada dalam keadaan lebih stabil sedang pergerakan molekul menjadi terlalu pelan atau geometri terlalu kaku untuk membentuk kristalin. Istilah kaca bersinonim dengan keadaan tak seimbang yang terus-menerus. Sifat polimer lainnya, yang juga sangat tergantung pada temperaturnya, adalah responsnya terhadap gaya—sebagaimana diindikasikan oleh dua tipe perilaku yang utama: elastis dan plastik. Bahan-bahan bersifat elastis akan kembali ke bentuk asalnya begitu gaya tidak ada lagi. Bahan-bahan plastik takkan kembali ke bentuk asalnya. Di dalam bahan plastik berlangsung aliran yang mirip dengan cairan yang sifat rekat/kekentalannya tinggi. Kebanyakan material mendemonstrasikan kombinasi dari perilaku elastis dan plastik, memperlihatkan perilaku plastik setelah melebihi batasan elastis.

Klasifikasi polimer

Teknologi polimer berdasarkan sumbernya dapat dikelompokkan dalam 3 kelompok, yaitu (1) Polimer Alam yang terjadi secara alami seperti karet alam, karbohidrat, protein, selulosa, dan wol. (2) Polimer Semi Sintetik yang diperoleh dari hasil modifikasi polimer alam dan bahan kimia seperti serat rayon dan selulosa nitrat. (3) Polimer Sintesis, yaitu polimer yang dibuat melalui polimerisasi dari monomer-monomer polimer, seperti formaldehida."
Demikian papar Ir. Yusuf Setiawan, M.Eng selaku Peneliti Bidang Derivat Selulosa dan Lingkungan Balai Besar Pulp dan Kertas Bandung. Hal ini disampaikan Yusup ketika menjadi pembicara Kuliah Umum "Peranan Polimer Sebagai Bahan Baku Pengembangan Produk Manufaktur" di Jurusan Teknik Kimia FTI UII, Rabu, 29 Desember 2010. Dalam Kuliah Umum tersebut, Yusuf berdampingan dengan Prof. Ir. Rochmadi, SU., Ph.D selaku Kepala Laboratorium Teknologi Polimer, Teknik Kimia, FT UGM.
Menurut kedua pembicara, teknologi polimer di Indonesia berkembang secara aplikatif dan dinamis. "Pemanfaatan teknologi polimer dalam kehidupan kita sehari-hari dapat kita lihat pada produk pelumas mesin, pesawat terbang, kampas rem, isolator alat listrik, gigi palsu dan lain sebagainya. Jadi, pemanfaatan teknologi polimer ini tidak akan ada matinya. Hal inilah yang seharusnya dapat meningkatkan minat mahasiswa untuk terus mengkaji dan meneliti teknologi polimer", ujar Prof. Rochmadi.
Bagi Indonesia, menurut mereka, dampak positif dengan berkembangnya industri polimer dapat menyerap lebih banyak tenaga kerja. "Apalagi dengan sifat-sifat yang dimiliki polimer seperti mudah diolah menjadi produk pada suhu rendah dan biaya murah, ringan, tahan korosi, dan bersifat isolator yang baik terhadap panas dan listrik, maka teknologi polimer ini ke depan akan semakin banyak diminati oleh perusahaan manufaktur sebagai bahan baku mereka." tutur mereka.=== Berdasarkan sumbernya ===
  1. Polimer alami : kayu, kulit binatang, kapas, karet alam, rambut
  2. Polimer sintetis
    1. Tidak terdapat secara alami: nylon, poliester, polipropilen, polistiren
    2. Terdapat di alam tetapi dibuat oleh proses buatan: karet sintetis
    3. Polimer alami yang dimodifikasi: seluloid, cellophane (bahan dasarnya dari selulosa tetapi telah mengalami modifikasi secara radikal sehingga kehilangan sifat-sifat kimia dan fisika asalnya)

Sifat-sifat khas bahan polimer pada umumnya adalah sebagai berikut:
1.Mampu cetak dengan baik.Pada temperature relative rendah dapat dicetak dengan penyuntikan,penekanan,ekstrusi dan seterunya,yang menyebabkan ongkos pembuatan lebih rendah dari pada untuk logam dan kramik.
2.Produk yang ringan dan kuat dapat dibuat.berat jenis polimer rendah dibandingkan dengan logam dan kramik,yaitu 1.0-1.7 yang memungkinkan membuat barang ringan dan kuat.
3.Banyak diantara polimer bersifat isolasi listrik yang baik.polimer mungkin juga dibuat konduktor dengan jalan mencampurnya dengan serbuk logam,butiran karbon dan sebagainya.
4.Baik sekali dalam ketahanan air dan ketahanan zat kimia.pemilihan bahan yang baik akan menghasilkan produk yang mempunyai sifat-sifat baik sekali.
5.Produk-produk dengan sifat yang cukup berbeda dapat dibuat tergantung pada cara pembuatanya.dengan mencampur zat pemplastis,pengisi dan sebagainya sifat-sifat dapat berubah dalam daerah luas.sebagai contoh polivinil klorida dengan zat pelapis karet dengan pengisi (serbuk karbon) plastic diperkuat serat gelas(FRP=fiberglass reinforced plastics)
6.Umumnya bahan polimer lebih murah.
7.Kurang tahan terhadap terhadap panas.hal ini sangat berbeda dengan logam dan kramik.Walapun ketahanan panas bahan polimer tidak sekuat logam dan kramik,pada pengunaanya harus cukup diperhatikan.
8.Kekerasan permukaan yang sangat kurang.Bahan polimer yang keras ada,tetapi masih jauh dibawah kekerasan logam dan kramik.
9.Kurang tahan terhadap pelarut.Umumnya larut dalam zat pelarut tertentu kecuali beberapa bahan khusus seperti politetrafluoretilen.kalau tidak dapat larut,mudah retak karena kontak yang terus menerus dengan pelarut dan disertai dengan tegangan.karena itu perlu perhatian yang khusus.
10.Mudah termuati listrik secara elektro static.kecuali bebrapa bahan yang khusus dibuat agar menjadi hantaran listrik,kurang higroskopik dan dapat dimuatai listrik.
11.Beberapa bahan tahan abrasi atau mempunyai koefisien gesek yang kecil.

Tidak ada komentar:

Poskan Komentar